Western NY Public Policy Transmission Report

Dawei Fan Supervisor, Public Policy and Interregional Planning

ESPWG/TPAS

July 27, 2017, KCC

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Process Overview

- June 30, 2017: Draft Western NY Report Posted
- July 20, 2017: ESPWG and TPAS Meeting
- July 27, 2017: ESPWG, present draft ranking and selection recommendation, additional written comments due by July 31, 2017
- August 8, 2017: ESPWG, present completed report with ranking and selection recommendation
- August 10, 2017: Operating Committee (for information, not required by Tariff)
- August 18, 2017: Business Issue Committee (advisory vote)
- August 30, 2017: Management Committee (advisory vote)
- September 2017: Western NY Report delivered to NYISO Board

Agenda

- Responses to Questions and Comments
- Evaluation Updates
- Ranking and Selection Recommendation
- Next Steps

Responses to Questions and Comments

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

Review of Questions and Comments

The NYISO received a high volume of questions and comments. Today we will respond to common questions and those most relevant to the selection. The NYISO will continue examining the questions and incorporating feedback in the next draft of the report.

Lines 61 & 64 Tower Separation

- Tower contingency for loss of Niagara Packard 230 kV line #61 and Niagara Robinson Road 230 kV line #64 is limiting in the pre-project transfer analysis
- With the Western NY Public Policy Transmission Projects in place, this tower contingency is no longer the most limiting element in the transfer analysis
- While the tower separation provides benefit to system operation, it is not a significant distinguishing factor between projects in the evaluation

Comparison between 2014 and 2016 Reliability Planning Process Base Cases

Different base cases

- Different horizon years (2024 vs. 2026)
- Load forecasts based on different Gold Books (GB14 2024 load:36, 580 MW, and GB16 2026 load: 34,056 MW)
- Different generation resource and dispatch
- Different external representation
- The two base cases are available subject to compliance with CEII requirements and execution of an NDA

Detailed Independent Cost Estimates

- SECO developed detailed overnight capital cost estimates for all the viable and sufficient projects based on a consistent methodology, and stakeholders requested these estimates to be made available
- The NYISO will expand the level of details for the cost estimates
- The NYISO applied sales tax consistently across all projects

Wood vs. Steel Structure

- SECO considered all the characteristics of both structure types relative to cost estimates, ROW, and risk factors
- Subject to the PSC's Article VII siting process review for environmental considerations

Project Status in Interconnection Queue

Project ID	Queue
т006	Q547
т007	Q550
т008	Q548
т009	Q549
T011	Q528
Т012	Q529
Т013	Q525
T014	Q545A
T015	Q530
T017	Q588

RAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Miscellaneous Questions

- Discount rate used: 6.843%
- Clarification on interaction with LTP

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Evaluation Updates

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

Independent Cost Estimates

The NYISO and its independent consultant reviewed the draft report, and made a minor correction on cost estimates for T014 and T015

Project ID	Independent Cost Estimate: 2017 \$M
Т006	158
Т007	276
Т008	348
Т009	479
Т011	182
Т012	432
Т013	232
Т014	175
T014_Alt	217
T015	155
T015_Alt	197
Т017	286

MAPS Scenario: IESO-MISO and SR Combined

- IESO-MISO historical flow modeled
- Series reactors on Packard-Huntley 230 kV lines in service for all projects

Project ID	SR In-service and Historical IESO-MISO
T006	(289)
T013	(308)
T014	(338)
T015	(304)

RAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Ranking and Selection Recommendation

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

Tired Ranking

Tier 1 projects:

- T006: North America Transmission Proposal 1
- T013: NYPA/NYSEG Western NY Energy Link
- T014: NextEra Energy Transmission New York Empire State Line Proposal 1
- T015: NextEra Energy Transmission New York Empire State Line Proposal 2

Tier 2 projects:

- T007: North America Transmission Proposal 2
- T008: North America Transmission Proposal 3
- T009: North America Transmission Proposal 4
- T011: National Grid Moderate Power Transfer Solution
- T012: National Grid High Power Transfer Solution
- T017: Exelon Transmission Company Niagara Area Transmission Expansion

- Dysinger-Stolle Road 345 kV line proposed on existing ROW, and a new 345/115 kV transformer added at Stolle Road substation
- The estimated cost by SECO is among the lowest, only slightly higher than that of T015
- The estimated minimum construction duration by SECO is the shortest at 40 months
- The cost per MW ratio and production cost saving over cost ratio are relatively good
- Good operability and expandability

- Dysinger-Stolle Road 345 kV line proposed on existing ROW, two 345/230 kV transformers added at Stolle Road, and reconductoring of Stolle Road-Gardenville 230 kV line
- The estimated cost by SECO is the highest among Tier 1 projects
- The estimated minimum construction duration by SECO is 44 months
- The cost per MW ratio and production cost saving over cost ratio are relatively good
- Good operability and expandability

- Dysinger-Stolle Road 345 kV line proposed on existing ROW or new ROW as an alternative
- The estimated cost by SECO is one of the lowest; only higher than that of T015 and T006
- The estimated minimum construction duration by SECO is the shortest at 40 months
- The cost per MW ratio and production cost saving over the cost ratio are generally the best when considering the various scenarios evaluated
- The proposed Dysinger substation would become the new 345 kV hub in Western NY where seven 345 kV lines are connected, and electrically reduce the distance between Niagara and Rochester to enable greater utilization of the existing 345 kV corridor
- The PAR proposed at the Dysinger substation provides additional operational flexibility at the 345 kV level. Even when-the PAR is bypassed, the project still demonstrates superior benefits

- Dysinger-Stolle Road 345 kV line proposed on existing ROW or new ROW as alternative
- The estimated cost by SECO is the lowest
- The estimated minimum duration by SECO is the shortest at 40 months
- The cost per MW ratio and production cost saving over the cost ratio are relatively good
- The proposed Dysinger substation would become the new 345 kV hub in Western NY where seven 345 kV lines are connected, and electrically reduce the distance between Niagara and Rochester to enable greater utilization of the existing 345 kV corridor

Summary of Evaluation

 High-level summary of the relative performance of each project for each metric using certain scenarios

Project ID	Independent Capital Cost Estimate: 2017 \$M	Independent Duration Estimate: months	Ontario-NY Transfer Limit: MW (1)	Cost per MW: \$M/MW (1)	Production Cost Savings: 2017 \$M (2)	Production Cost Savings / Cost (2)	System CO2 Emission Reduction: 1000 tons (2)	Performance: Niagara Gen + Niagara Ties in 2025: GWh (2)	Operability	Expandability	Property Rights
T006	158	40	1,440	0.11	209	1.3	11,390	24,165	Good	Good	Existing ROW
T007	276	59	1,704	0.16	231	0.8	11,582	24,191	Good	Good	Existing and new ROW
T008	348	65	1,796	0.19	230	0.7	11,023	24,208	Good	Good	Existing and new ROW
T009	479	71	1,753	0.27	269	0.6	11,061	24,368	Good	Good	Existing and new ROW
T011	182	57	216	0.84	(1)	0.0	378	23,089	Fair	Fair	Existing ROW
T012	432	60	1,431	0.30	75	0.2	2,017	23,654	Good	Fair	Existing ROW
T013	232	44	1,482	0.16	229	1.0	11,305	24,198	Good	Good	Existing ROW
T014	175	40	1,604	0.11	274	1.6	7,362	24,309	Excellent	Good	Existing ROW
T014_Alt	217	49	1,604	0.14	274	1.3	7,362	24,309	Excellent	Good	New ROW as alternative
T015	155	40	1,403	0.11	225	1.5	10,681	24,251	Good	Good	Existing ROW
T015_Alt	197	49	1,403	0.14	225	1.1	10,681	24,251	Good	Good	New ROW as alternative
T017	286	66	1,536	0.19	207	0.7	11,104	24,224	Fair	Fair	Existing and new ROW

Notes:

(1) Transfer scenario with series reactors on Packard-Huntley lines in-service for all projects

(2) MAPS scenario 2 with series reactors on Packard-Huntley lines in-service for all projects

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Tier 1 Projects: Overall Comparison

- T014 and T015 are identical projects except that T014 includes a PAR at Dysinger 345 kV substation. The benefits provided by the PAR exceed the cost. These benefits include increased production cost saving, increased transfer capability, and improved operability for the system. As a result, T014 was ranked higher than T015.
- T015 and T006 are comparable in project design and in many metrics. However, T015 cuts out the 345 kV loop to Somerset and results in greater production cost saving relative to cost especially in MAPS scenario 2 (SR in service). Therefore, T015 was ranked higher than T006.
- T006 was compared against T013. With the NYISO-controlled series reactors on Packard-Huntley 230 kV lines in-service, T006 performs better in cost per MW and production cost saving relative to the cost. Therefore, T006 was ranked higher than T013.
- T013 was compared against T014. The production cost saving and cost per MW for T014 is consistently better than T013 with the NYISO-controlled series reactors in service.

Tier 2 Projects: Overall Comparison

- Based on consideration of all the evaluation metrics for efficiency or cost effectiveness and consideration of input from stakeholders, Tier 2 projects were also compared and ranked
- Tier 2 projects may be less expensive with fewer benefits, or more expensive without sufficient corresponding benefits

Ranking

Tier	Ranking	Project ID	Developer	Project Name			
1	1	T014	NextEra Energy Transmission New York	Empire State Line Proposal 1			
	2	T015	NextEra Energy Transmission New York	Empire State Line Proposal 2			
	3	T006	North America Transmission	Proposal 1			
	4	T013	NYPA/NYSEG	Western NY Energy Link			
2	5	T007	North America Transmission	Proposal 2			
	6	T008	North America Transmission	Proposal 3			
	7	T017	Exelon Transmission Company	Niagara Area Transmission Expansion			
	8	T009	North America Transmission	Proposal 4			
	9	T012	National Grid	High Power Transfer Solution			
	10	T011	National Grid	Moderate Power Transfer Solution			

DRAFT – FOR DISCUSSION PURPOSES ONLY

Recommended Selection

- The NYISO recommends T014 as the more efficient or cost effective project based on its overall satisfaction and performance among the evaluation metrics
 - The estimated project cost for TO14 by SECO is among the lowest—only slightly higher than that of T015 and T006 proposals
 - The cost per MW ratio for TO14 is among the lowest, and the production cost saving over the cost ratio is the highest across all scenarios
 - The proposed Dysinger substation would become the new 345 kV hub in Western NY where seven 345 kV lines are connected, and electrically reduce the distance between Niagara and Rochester to enable greater utilization of the existing 345 kV corridor
 - The proposed PAR at the Dysinger substation provides additional operational flexibility at the 345 kV level. Even when the PAR is bypassed, the project still demonstrates significant benefits.
 - SECO identified no critical risks regarding siting, equipment procurement, real estate acquisition, and construction

In-Service Date for Recommended Selection

- The tariff requires the Public Policy Transmission Planning Report to specify the in-service date for the selected project
- The in-service date for T014 will be established based on SECO's independent project schedule estimates

Next Steps

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

Next Steps

- Please provide additional comments to <u>PublicPolicyPlanningMailbox@nyiso.com</u> as soon as possible, but no later than COB July 31, 2017
- August 8, 2017: ESPWG, present updated report with ranking and selection recommendation
- August 10, 2017: Operating Committee (for information, not required by Tariff)
- August 11, 2017: posting deadline for Special Business Issue Committee
- August 18, 2017: Special Business Issue Committee (advisory vote)
- August 30, 2017: Management Committee (advisory vote)
- September 2017: Western NY Report delivered to NYISO Board

Questions? We are here to help. Let us know if we can add anything.

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com